Serveur d'exploration sur le patient édenté

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides

Identifieur interne : 003B29 ( Main/Exploration ); précédent : 003B28; suivant : 003B30

Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides

Auteurs : Nina Broggini [Suisse] ; Samuele Tosatti [Suisse] ; Stephen J. Ferguson [Suisse] ; Martin Schuler [Suisse] ; Marcus Textor [Suisse] ; Michael M. Bornstein [Suisse] ; Dieter D. Bosshardt [Suisse] ; Daniel Buser [Suisse]

Source :

RBID : ISTEX:1BD2DB6C700568FC790627412AE8C57887E735D0

Descripteurs français

English descriptors

Abstract

Enhancing osseointegration through surface immobilization of multiple short peptide sequences that mimic extracellular matrix (ECM) proteins, such as arginine–glycine–aspartic acid (RGD) and lysine–arginine–serine–arginine (KRSR), has not yet been extensively explored. Additionally, the effect of biofunctionalizing chemically modified sandblasted and acid‐etched surfaces (modSLA) is unknown. The present study evaluated modSLA implant surfaces modified with RGD and KRSR for potentially enhanced effects on bone apposition and interfacial shear strength during early stages of bone regeneration. Two sets of experimental implants were placed in the maxillae of eight miniature pigs, known for their rapid wound healing kinetics: bone chamber implants creating two circular bone defects for histomorphometric analysis on one side and standard thread configuration implants for removal torque testing on the other side. Three different biofunctionalized modSLA surfaces using poly‐L‐lysine‐graft‐poly(ethylene glycol) (PLL‐g‐PEG) as a carrier minimizing nonspecific protein adsorption [(i) 20 pmol cm−2 KRSR alone (KRSR); or in combination with RGD in two different concentrations; (ii) 0.05 pmol cm−2 RGD (KRSR/RGD‐1); (iii) 1.26 pmol cm−2 RGD (KRSR/RGD‐2)] were compared with (iv) control modSLA. Animals were sacrificed at 2 weeks. Removal torque values (701.48–780.28 N mm), bone‐to‐implant contact (BIC) (35.22%–41.49%), and new bone fill (28.58%–30.62%) demonstrated no significant differences among treatments. It may be concluded that biofunctionalizing modSLA surfaces with KRSR and RGD derivatives of PLL‐g‐PEG polymer does not increase BIC, bone fill, or interfacial shear strength. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.

Url:
DOI: 10.1002/jbm.a.34004


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides</title>
<author>
<name sortKey="Broggini, Nina" sort="Broggini, Nina" uniqKey="Broggini N" first="Nina" last="Broggini">Nina Broggini</name>
</author>
<author>
<name sortKey="Tosatti, Samuele" sort="Tosatti, Samuele" uniqKey="Tosatti S" first="Samuele" last="Tosatti">Samuele Tosatti</name>
</author>
<author>
<name sortKey="Ferguson, Stephen J" sort="Ferguson, Stephen J" uniqKey="Ferguson S" first="Stephen J." last="Ferguson">Stephen J. Ferguson</name>
</author>
<author>
<name sortKey="Schuler, Martin" sort="Schuler, Martin" uniqKey="Schuler M" first="Martin" last="Schuler">Martin Schuler</name>
</author>
<author>
<name sortKey="Textor, Marcus" sort="Textor, Marcus" uniqKey="Textor M" first="Marcus" last="Textor">Marcus Textor</name>
</author>
<author>
<name sortKey="Bornstein, Michael M" sort="Bornstein, Michael M" uniqKey="Bornstein M" first="Michael M." last="Bornstein">Michael M. Bornstein</name>
</author>
<author>
<name sortKey="Bosshardt, Dieter D" sort="Bosshardt, Dieter D" uniqKey="Bosshardt D" first="Dieter D." last="Bosshardt">Dieter D. Bosshardt</name>
</author>
<author>
<name sortKey="Buser, Daniel" sort="Buser, Daniel" uniqKey="Buser D" first="Daniel" last="Buser">Daniel Buser</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:1BD2DB6C700568FC790627412AE8C57887E735D0</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/jbm.a.34004</idno>
<idno type="url">https://api.istex.fr/document/1BD2DB6C700568FC790627412AE8C57887E735D0/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000D83</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000D83</idno>
<idno type="wicri:Area/Istex/Curation">000D83</idno>
<idno type="wicri:Area/Istex/Checkpoint">000F99</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000F99</idno>
<idno type="wicri:doubleKey">1549-3296:2012:Broggini N:evaluation:of:chemically</idno>
<idno type="wicri:Area/Main/Merge">003B46</idno>
<idno type="wicri:Area/Main/Curation">003B29</idno>
<idno type="wicri:Area/Main/Exploration">003B29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides
<ref type="note" target="#fn6"></ref>
<ref type="note" target="#fn7"></ref>
</title>
<author>
<name sortKey="Broggini, Nina" sort="Broggini, Nina" uniqKey="Broggini N" first="Nina" last="Broggini">Nina Broggini</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne</wicri:regionArea>
<wicri:noRegion>CH‐3010 Berne</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Suisse</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Correspondence address: Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, Berne CH‐3010</wicri:regionArea>
<placeName>
<settlement type="city">Berne</settlement>
<region type="région" nuts="3">Canton de Berne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tosatti, Samuele" sort="Tosatti, Samuele" uniqKey="Tosatti S" first="Samuele" last="Tosatti">Samuele Tosatti</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich</wicri:regionArea>
<wicri:noRegion>CH‐8093 Zürich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ferguson, Stephen J" sort="Ferguson, Stephen J" uniqKey="Ferguson S" first="Stephen J." last="Ferguson">Stephen J. Ferguson</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institute for Surgical Technology and Biomechanics, University of Berne, Stauffacherstrasse 78, CH‐3014 Berne</wicri:regionArea>
<wicri:noRegion>CH‐3014 Berne</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schuler, Martin" sort="Schuler, Martin" uniqKey="Schuler M" first="Martin" last="Schuler">Martin Schuler</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich</wicri:regionArea>
<wicri:noRegion>CH‐8093 Zürich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Institut Straumann AG, Peter Merian‐Weg 12, CH‐4052 Basel</wicri:regionArea>
<wicri:noRegion>CH‐4052 Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Textor, Marcus" sort="Textor, Marcus" uniqKey="Textor M" first="Marcus" last="Textor">Marcus Textor</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>BioInterfaceGroup, Laboratory for Surface Science and Technology, Department of Materials, ETH, Wolfgang‐Pauli‐Strasse 10, HCI F 539, CH‐8093 Zürich</wicri:regionArea>
<wicri:noRegion>CH‐8093 Zürich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bornstein, Michael M" sort="Bornstein, Michael M" uniqKey="Bornstein M" first="Michael M." last="Bornstein">Michael M. Bornstein</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne</wicri:regionArea>
<wicri:noRegion>CH‐3010 Berne</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bosshardt, Dieter D" sort="Bosshardt, Dieter D" uniqKey="Bosshardt D" first="Dieter D." last="Bosshardt">Dieter D. Bosshardt</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne</wicri:regionArea>
<wicri:noRegion>CH‐3010 Berne</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Buser, Daniel" sort="Buser, Daniel" uniqKey="Buser D" first="Daniel" last="Buser">Daniel Buser</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Berne, Freiburgstrasse 7, CH‐3010 Berne</wicri:regionArea>
<wicri:noRegion>CH‐3010 Berne</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research Part A</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A</title>
<idno type="ISSN">1549-3296</idno>
<idno type="eISSN">1552-4965</idno>
<imprint>
<biblScope unit="vol">100A</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="703">703</biblScope>
<biblScope unit="page" to="711">711</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-03">2012-03</date>
</imprint>
<idno type="ISSN">1549-3296</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1549-3296</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active peptides</term>
<term>Additional improvement</term>
<term>Adhesion</term>
<term>Adsorption</term>
<term>Animal model</term>
<term>Apical chambers</term>
<term>Apposition</term>
<term>Berne</term>
<term>Biofunctionalized</term>
<term>Biofunctionalized implant surfaces</term>
<term>Biomaterials</term>
<term>Biomechanical</term>
<term>Biomechanical evaluation</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Blood plasma</term>
<term>Bone apposition</term>
<term>Bone area</term>
<term>Bone chamber</term>
<term>Bone chamber implants</term>
<term>Bone chambers</term>
<term>Bone formation</term>
<term>Bone matrix</term>
<term>Bone trabeculae</term>
<term>Bony ingrowth</term>
<term>Bony wall</term>
<term>Broggini</term>
<term>Bronectin</term>
<term>Bronectin fragment</term>
<term>Buser</term>
<term>Cell adhesion</term>
<term>Cell adhesion molecules</term>
<term>Cell attachment</term>
<term>Cochran</term>
<term>Coronal chambers</term>
<term>Current investigation</term>
<term>Dental implants</term>
<term>Different concentrations</term>
<term>Early stages</term>
<term>Experimental implants</term>
<term>Extracellular matrix</term>
<term>Hepes</term>
<term>Histomorphometric</term>
<term>Histomorphometric analysis</term>
<term>Histomorphometric study</term>
<term>Hydraulic actuator</term>
<term>Implant</term>
<term>Implant surface</term>
<term>Implant surface polymer coating</term>
<term>Implant types</term>
<term>Individual animals</term>
<term>Individual variability</term>
<term>Initial analysis</term>
<term>Institut straumann</term>
<term>Interfacial shear strength</term>
<term>Interfacial stiffness</term>
<term>Krsr</term>
<term>Krsr modsla</term>
<term>Lower container</term>
<term>Mater</term>
<term>Matrix</term>
<term>Maxilla</term>
<term>Maximum torque</term>
<term>Mineralized</term>
<term>Mineralized bone</term>
<term>Mineralized bone matrix</term>
<term>Mineralized tissue</term>
<term>Miniature pigs</term>
<term>Modsla</term>
<term>Modsla surfaces</term>
<term>Molecular architecture</term>
<term>Molecular weight</term>
<term>Molecular weight lysine unit</term>
<term>Native bone</term>
<term>Novel peptides</term>
<term>Osteoblast</term>
<term>Osteoblast attachment</term>
<term>Osteoblast differentiation</term>
<term>Osteoid</term>
<term>Peptide</term>
<term>Peptide sequence</term>
<term>Peptide sequences</term>
<term>Peptide surface density</term>
<term>Pmol</term>
<term>Pmol krsr</term>
<term>Pmol krsr pmol</term>
<term>Pmol pmol</term>
<term>Polymer</term>
<term>Potential differences</term>
<term>Present study</term>
<term>Previous studies</term>
<term>Protein adsorption</term>
<term>Rapid wound healing kinetics</term>
<term>Removal torque</term>
<term>Removal torque testing</term>
<term>Removal torque values</term>
<term>Room temperature</term>
<term>Salt buffer solution</term>
<term>Sandblasted</term>
<term>Shear strength</term>
<term>Similar outcome</term>
<term>Square interface</term>
<term>Standard deviation</term>
<term>Surface coverage</term>
<term>Surface density values</term>
<term>Surface topography</term>
<term>Surgical</term>
<term>Surgical research unit</term>
<term>Textor</term>
<term>Titanium</term>
<term>Titanium implant surfaces</term>
<term>Titanium implants</term>
<term>Titanium surface</term>
<term>Titanium surfaces</term>
<term>Torque</term>
<term>Tosatti</term>
<term>Treatment modalities</term>
<term>Treatment types</term>
<term>Wieland</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Active peptides</term>
<term>Additional improvement</term>
<term>Adhesion</term>
<term>Adsorption</term>
<term>Animal model</term>
<term>Apical chambers</term>
<term>Apposition</term>
<term>Berne</term>
<term>Biofunctionalized</term>
<term>Biofunctionalized implant surfaces</term>
<term>Biomaterials</term>
<term>Biomechanical</term>
<term>Biomechanical evaluation</term>
<term>Biomed</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Blood plasma</term>
<term>Bone apposition</term>
<term>Bone area</term>
<term>Bone chamber</term>
<term>Bone chamber implants</term>
<term>Bone chambers</term>
<term>Bone formation</term>
<term>Bone matrix</term>
<term>Bone trabeculae</term>
<term>Bony ingrowth</term>
<term>Bony wall</term>
<term>Broggini</term>
<term>Bronectin</term>
<term>Bronectin fragment</term>
<term>Buser</term>
<term>Cell adhesion</term>
<term>Cell adhesion molecules</term>
<term>Cell attachment</term>
<term>Cochran</term>
<term>Coronal chambers</term>
<term>Current investigation</term>
<term>Dental implants</term>
<term>Different concentrations</term>
<term>Early stages</term>
<term>Experimental implants</term>
<term>Extracellular matrix</term>
<term>Hepes</term>
<term>Histomorphometric</term>
<term>Histomorphometric analysis</term>
<term>Histomorphometric study</term>
<term>Hydraulic actuator</term>
<term>Implant</term>
<term>Implant surface</term>
<term>Implant surface polymer coating</term>
<term>Implant types</term>
<term>Individual animals</term>
<term>Individual variability</term>
<term>Initial analysis</term>
<term>Institut straumann</term>
<term>Interfacial shear strength</term>
<term>Interfacial stiffness</term>
<term>Krsr</term>
<term>Krsr modsla</term>
<term>Lower container</term>
<term>Mater</term>
<term>Matrix</term>
<term>Maxilla</term>
<term>Maximum torque</term>
<term>Mineralized</term>
<term>Mineralized bone</term>
<term>Mineralized bone matrix</term>
<term>Mineralized tissue</term>
<term>Miniature pigs</term>
<term>Modsla</term>
<term>Modsla surfaces</term>
<term>Molecular architecture</term>
<term>Molecular weight</term>
<term>Molecular weight lysine unit</term>
<term>Native bone</term>
<term>Novel peptides</term>
<term>Osteoblast</term>
<term>Osteoblast attachment</term>
<term>Osteoblast differentiation</term>
<term>Osteoid</term>
<term>Peptide</term>
<term>Peptide sequence</term>
<term>Peptide sequences</term>
<term>Peptide surface density</term>
<term>Pmol</term>
<term>Pmol krsr</term>
<term>Pmol krsr pmol</term>
<term>Pmol pmol</term>
<term>Polymer</term>
<term>Potential differences</term>
<term>Present study</term>
<term>Previous studies</term>
<term>Protein adsorption</term>
<term>Rapid wound healing kinetics</term>
<term>Removal torque</term>
<term>Removal torque testing</term>
<term>Removal torque values</term>
<term>Room temperature</term>
<term>Salt buffer solution</term>
<term>Sandblasted</term>
<term>Shear strength</term>
<term>Similar outcome</term>
<term>Square interface</term>
<term>Standard deviation</term>
<term>Surface coverage</term>
<term>Surface density values</term>
<term>Surface topography</term>
<term>Surgical</term>
<term>Surgical research unit</term>
<term>Textor</term>
<term>Titanium</term>
<term>Titanium implant surfaces</term>
<term>Titanium implants</term>
<term>Titanium surface</term>
<term>Titanium surfaces</term>
<term>Torque</term>
<term>Tosatti</term>
<term>Treatment modalities</term>
<term>Treatment types</term>
<term>Wieland</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Biomatériau</term>
<term>Polymère</term>
<term>Titane</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Enhancing osseointegration through surface immobilization of multiple short peptide sequences that mimic extracellular matrix (ECM) proteins, such as arginine–glycine–aspartic acid (RGD) and lysine–arginine–serine–arginine (KRSR), has not yet been extensively explored. Additionally, the effect of biofunctionalizing chemically modified sandblasted and acid‐etched surfaces (modSLA) is unknown. The present study evaluated modSLA implant surfaces modified with RGD and KRSR for potentially enhanced effects on bone apposition and interfacial shear strength during early stages of bone regeneration. Two sets of experimental implants were placed in the maxillae of eight miniature pigs, known for their rapid wound healing kinetics: bone chamber implants creating two circular bone defects for histomorphometric analysis on one side and standard thread configuration implants for removal torque testing on the other side. Three different biofunctionalized modSLA surfaces using poly‐L‐lysine‐graft‐poly(ethylene glycol) (PLL‐g‐PEG) as a carrier minimizing nonspecific protein adsorption [(i) 20 pmol cm−2 KRSR alone (KRSR); or in combination with RGD in two different concentrations; (ii) 0.05 pmol cm−2 RGD (KRSR/RGD‐1); (iii) 1.26 pmol cm−2 RGD (KRSR/RGD‐2)] were compared with (iv) control modSLA. Animals were sacrificed at 2 weeks. Removal torque values (701.48–780.28 N mm), bone‐to‐implant contact (BIC) (35.22%–41.49%), and new bone fill (28.58%–30.62%) demonstrated no significant differences among treatments. It may be concluded that biofunctionalizing modSLA surfaces with KRSR and RGD derivatives of PLL‐g‐PEG polymer does not increase BIC, bone fill, or interfacial shear strength. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2012.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Berne</li>
</region>
<settlement>
<li>Berne</li>
</settlement>
</list>
<tree>
<country name="Suisse">
<noRegion>
<name sortKey="Broggini, Nina" sort="Broggini, Nina" uniqKey="Broggini N" first="Nina" last="Broggini">Nina Broggini</name>
</noRegion>
<name sortKey="Bornstein, Michael M" sort="Bornstein, Michael M" uniqKey="Bornstein M" first="Michael M." last="Bornstein">Michael M. Bornstein</name>
<name sortKey="Bosshardt, Dieter D" sort="Bosshardt, Dieter D" uniqKey="Bosshardt D" first="Dieter D." last="Bosshardt">Dieter D. Bosshardt</name>
<name sortKey="Broggini, Nina" sort="Broggini, Nina" uniqKey="Broggini N" first="Nina" last="Broggini">Nina Broggini</name>
<name sortKey="Broggini, Nina" sort="Broggini, Nina" uniqKey="Broggini N" first="Nina" last="Broggini">Nina Broggini</name>
<name sortKey="Buser, Daniel" sort="Buser, Daniel" uniqKey="Buser D" first="Daniel" last="Buser">Daniel Buser</name>
<name sortKey="Ferguson, Stephen J" sort="Ferguson, Stephen J" uniqKey="Ferguson S" first="Stephen J." last="Ferguson">Stephen J. Ferguson</name>
<name sortKey="Schuler, Martin" sort="Schuler, Martin" uniqKey="Schuler M" first="Martin" last="Schuler">Martin Schuler</name>
<name sortKey="Schuler, Martin" sort="Schuler, Martin" uniqKey="Schuler M" first="Martin" last="Schuler">Martin Schuler</name>
<name sortKey="Textor, Marcus" sort="Textor, Marcus" uniqKey="Textor M" first="Marcus" last="Textor">Marcus Textor</name>
<name sortKey="Tosatti, Samuele" sort="Tosatti, Samuele" uniqKey="Tosatti S" first="Samuele" last="Tosatti">Samuele Tosatti</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/EdenteV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003B29 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003B29 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    EdenteV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:1BD2DB6C700568FC790627412AE8C57887E735D0
   |texte=   Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)‐ and heparin (KRSR)‐binding peptides
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Thu Nov 30 15:26:48 2017. Site generation: Tue Mar 8 16:36:20 2022